2020

MATHEMATICS - HONOURS

Seventh Paper
 (Module - XIV)

Full Marks: 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

Group - A

[Probability]
(Marks : 30)
Answer any one question.

1. (a) State the axioms of probability and give frequency interpretation of the axioms. What is meant by probability space?
(b) For n events $A_{1}, A_{2}, \ldots ., A_{n}$ in a probability space show that

$$
P\left(A_{1} A_{2} \ldots A_{n}\right) \geq P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{n}\right)-(n-1) .
$$

Hence deduce $P\left(A_{1}+A_{2}+\ldots+A_{n}\right) \leq P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{n}\right)$.
(c) From an urn containing 3 white and 5 black balls, 4 balls are transferred into an empty urn. From this urn a ball is drawn and is found to be white. What is the probability that out of four balls transferred 3 are white and 1 is black?
2. (a) If m objects are distributed at random among a men and b women, then show that the probability that men will get an odd number of objects is $\frac{(a+b)^{m}-(b-a)^{m}}{2(a+b)^{m}}$.
(b) In a Bernoullian sequence of n trials with constant probability of success p, find the most probable number of successes.
(c) When is a random variable said to be continuous? If a random variable X has standard normal distribution, find the probability density function of Y, where $Y=\frac{X^{2}}{2}$.
3. (a) Find the moment generating function of uniform distribution in ($-a, a$), $a>0$. Hence find moments of order k about the origin, where k is a positive integer. Also find the central moment of order 6 .
(b) If X is a Poisson variate with parameter μ, show that $P(X \leq n)=\frac{1}{\lfloor n} \int_{\mu}^{\infty} e^{-x} x^{n} d x$ where n is any positive integer.
(c) When are two random variables said to be independent? If p and q be independent random variables each uniformly distributed over the interval $(-1,1)$, find the probability that the equation $x^{2}+2 p x+q=0$ has real roots.
$(4+4+2)+10+(2+8)$
4. (a) State the limit theorem for characteristic functions. With the help of this theorem derive Poisson distribution as a limit of the binomial distribution.
[Hint : The characteristic function for a binomial (n, p) variate is $\left(p e^{i t}+1-p\right)^{n}$ and the characteristic function for a Poisson (μ) distribution is $\left.e^{\mu\left(e^{i t}-1\right)}\right]$
(b) Let $U=X+a Y, V=X+\frac{\sigma_{x}}{\sigma_{y}} Y$, where a is a constant and σ_{x}, σ_{y} are the standard deviations of the random variables X, Y where X, Y are positively correlated. If $\rho(U, V)=0$ then show that $a=-\frac{\sigma_{x}}{\sigma_{y}}$, where $\rho(U, V)$ is the correlation coefficient of U and V.
(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing function such that $g(x)>0$ for all $x \in \mathbb{R}$ and $E(X)=m$, where X is a random variable. If $E\{g(|X-m|)\}$ exists, then for any $\in>0$

$$
\begin{equation*}
P(|X-m| \geqslant \epsilon) \leq \frac{E\{g(|X-m|)\}}{g(\in)} \tag{4+6}
\end{equation*}
$$

Group - B

[Statistics]

(Marks : 20)
Answer any one question.
5. (a) Distinguish between 'distribution of a population' and 'distribution of a sample'. Explain the statement : "Distribution of the sample is the statistical image of the distribution of the population."
(b) For a normal (μ, σ) population, show that the statistic $\frac{n S^{2}}{\sigma^{2}}$ is χ^{2}-distributed with $(n-1)$ degrees of freedom where n, S^{2}, σ^{2} are sample size, sample variance and population variance respectively; μ is the population mean.
(c) A bivariate sample of size 11 gave the results $\bar{x}=7, S_{x}=2, \bar{y}=9, S_{y}=4$ and $r=0.5$. It was later found that one pair of the sample values $(x=7, y=9)$ was inaccurate and was rejected. How would the original value of r be affected by the rejection? (The symbols have their usual meaning)
(d) The random variable X is normally distributed with mean 68 cms and s.d. 2.5 cms . What should be the size of the sample whose mean shall not differ from the population mean by more than 1 cm with probability 0.95 ?
[Given that the area under standard normal curve to the right of the ordinate at 1.96 is 0.025] $(1+1+2)+7+5+4$
6. (a) Find the maximum likelihood estimate for the parameter p of a binomial $(2020, p)$ population on the basis of a sample drawn from the population. Is this estimate consistent?
(b) Find a confidence interval for the parameter m of a normal (m, σ) population with confidence coefficient $1-\epsilon(0<\epsilon<1)$ on the basis of a sample drawn from the population, where σ is known.
(c) Explain : (i) Simple hypothesis, (ii) Composite hypothesis, (iii) Critical region, (iv) Type-II error, (v) Power of a test.
(d) Design a decision rule to test the hypothesis that a coin is fair, if a sample of 64 tosses of the coin is taken and if a level of significance of 0.05 is used.

Given that $\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.96} e^{-x^{2} / 2} d x=0.4750$
(e) Find by the method of likelihood ratio testing, a test of $H_{0}: \sigma=\sigma_{0}$ for a normal (m, σ) population assuming that m is known.
$(3+1)+3+5+4+4$

